Protein A磁珠Protein G磁珠Protein L磁珠Protein A/G磁珠Protein A琼脂糖凝胶Protein G琼脂糖凝胶Protein L琼脂糖凝胶Protein A/G琼脂糖凝胶Anti-HA磁珠Anti-Myc磁珠Anti-DYKDDDDK磁珠(原Flag磁珠)链霉亲和素磁珠Anti-DYKDDDDK琼脂糖凝胶(原Flag凝胶)Anti-GST磁珠Anti-His磁珠Anti-GFP磁珠伴刀豆蛋白A(ConA)磁珠Protein A琼脂糖磁珠Protein G琼脂糖磁珠Protein A/G琼脂糖磁珠免疫沉淀磁珠His蛋白纯化琼脂糖凝胶GST蛋白纯化琼脂糖凝胶His蛋白纯化琼脂糖磁珠GST蛋白纯化琼脂糖磁珠Protein A Plus 琼脂糖磁珠Protein G Plus 琼脂糖磁珠Protein A/G Plus 琼脂糖磁珠蛋白抗体纯化磁珠PCR产物提取磁珠Oligo-dT包被磁珠核酸提取纯化磁珠羟基磁珠氨基磁珠羧基磁珠醛基磁珠NHS磁珠基础磁珠Protein A免疫(共)沉淀试剂盒Protein G免疫(共)沉淀试剂盒经典Protein A/G免疫(共)沉淀试剂盒Anti-HA免疫(共)沉淀试剂盒Anti-Myc免疫(共)沉淀试剂盒Anti-DYKDDDDK免疫(共)沉淀试剂盒Anti-DYKDDDDK免疫(共)沉淀试剂盒(凝胶法)Anti-GST免疫(共)沉淀试剂盒Anti-His免疫(共)沉淀试剂盒Anti-GFP免疫(共)沉淀试剂盒基础免疫(共)沉淀试剂盒His Pull-down试剂盒GST Pull-down试剂盒分子互作试剂盒His标签蛋白纯化试剂盒GST标签蛋白纯化试剂盒蛋白纯化试剂盒mRNA纯化试剂盒基础mRNA纯化试剂盒核酸提取纯化试剂盒生物配体快速偶联试剂盒生物偶联试剂盒血浆/血清外泌体提取试剂盒(磁珠法)细胞上清外泌体提取试剂盒(磁珠法)尿液外泌体提取试剂盒(磁珠法)外泌体研究产品双排4孔 1.5mL磁力架双排8孔 1.5mL磁力架双排16孔 1.5mL磁力架双排4孔 15mL磁力架双排4孔 50mL磁力架八联排 0.2mL磁力架(PCR)双排八孔1.5mL磁力架(铝合金款)双排十六孔1.5mL磁力架(铝合金款)96孔PCR板磁力架(铝合金款)96孔酶标板磁力架(铝合金款)手持均质仪配套设备生物偶联技术高通量蛋白纯化外泌体定向改造IVD试剂研发服务磁珠应用外泌体专题纳米抗体神经科学领域新冠相关PROTAC技术翎因动态行业新闻优惠促销产品支持技术支持客户发表文章学习资源企业简介企业文化团队风采生产与质量联系我们
Lab  on  the Beads

mRNA疫苗和药物共转录加帽技术研究进展

作者:写意君来源:同写意网址:https://mp.weixin.qq.com/s/qvnlGNshGBw0ahclTrKsrg

图片

应同写意邀请,恒诺康医药董事长张健存在“2022新型生物药先进技术峰会”上做了《mRNA疫苗和药物共转录加帽技术研究进展》的报告,本文系根据报告内容整理。


众所周知,分子生物学的核心理论,是从DNA到RNA、蛋白。而转录,就是从DNA生成RNA的过程。

但是,在细胞核内以DNA模板生成的是premature的RNA,需要在细胞核内进行一系列后转录的修饰,生成成熟的mRNA,转移到细胞质内进行后续的翻译过程,形成相应的蛋白。

后转录修饰是非常复杂的过程,包括几种酶的应用。下图大体描述了这一过程的变化。


图片


mRNA疫苗和药物因为具备安全性高、免疫性好、开发周期短以及量产迅速等优势,已经逐步应用到传染病疫苗、肿瘤细胞治疗、罕见病治疗、蛋白代替疗法等领域。


1
图片

mRNA的结构


在真核细胞中,成熟的mRNA具备一些关键的结构元件来发挥相关的功能。而体外转录的mRNA,则是通过模拟内源性mRNA的结构来发挥作用。

成熟mRNA的结构主要有五个部分,从5' 到3' 包括:5' 帽子结构(5' cap)、5' 非翻译区(5' UTR)、编码抗原的开放阅读框、3' 非翻译区(3' UTR)和一个PolyA尾。


图片


新冠mRNA疫苗快速研发、生产和批准,使世界对mRNA有了更深入的认识。当前有很多研究正在开展,不仅是疫苗、药物应用上,也涉及各种细胞治疗、基因治疗方面,验证着mRNA的潜力。

而想要实现这些突破,帽子结构(cap)对于mRNA来说至关重要。

5' 帽子结构包含一个7-甲基鸟苷核苷。现有研究发现,5' 端帽子结构可以调节mRNA的剪切成熟,并帮助RNA转录产物穿过核膜的选择性孔道而进入细胞质。

此外,5' 帽子结构还可以保护mRNA不被核酸外切酶降解,与翻译起始因子蛋白协同工作,招募核糖体,并协助核糖体与mRNA结合,使翻译从AUG开始。


图片

抗原编码区两侧的5' UTR、3' UTR和PolyA尾的长度,则可以调节mRNA翻译和半衰期。

mRNA疫苗和药物的开放阅读框,是实现功能的关键组成部分。这部分通过密码子优化,在不改变蛋白质序列的情况下增加翻译。在转录过程中,该部分加入假尿苷、N1-甲基假尿苷或其他核苷类似物,这些修饰核苷酸的引入阻止了模式识别受体的识别,确保翻译过程产生足够的蛋白质。

分别来自Moderna和Pfizer/BioNTech的两款新冠mRNA疫苗,都含有前述的核苷修饰。


2
图片

真核生物mRNA帽子结构


帽子结构是指在真核生物中转录后修饰形成的成熟mRNA在5'端的一个特殊结构,即m7GPPPN结构,又称为甲基鸟苷帽子。它是在RNA三磷酸酶、mRNA鸟苷酰转移酶、mRNA(鸟嘌呤-7)甲基转移酶和mRNA(核苷-2' )甲基转移酶催化形成的。

根据甲基化程度不同,在自然界的mRNA可形成3种类型的帽子:Cap 0、Cap 1和Cap 2。


图片


鸟苷以5'-5' 焦磷酸键与初级转录本的5' 端相连。当G第7位碳原子被甲基化形成m7GPPPN时,此时的帽子称为“Cap 0”,它存在于单细胞中。

如果转录本的第一个核苷酸的2'-O位也甲基化,形成m7GPPPNm,称为“Cap 1”,除了单细胞生物外,这是一种多数的帽子形式。

换言之,Cap 0和Cap 1的主要区别,在于第一个核苷酸的2'-O位羟基是否被甲基化。甲基化具有非常重要的活性和功能,可以提高mRNA在体内表达量,同时帮助mRNA逃脱体内免疫系统识别,更好地稳定mRNA结构。

如果转录本的第一、二个核苷酸的2'-O位均甲基化,成为m7G-PPPNmNm,则称为“Cap2”。10%-15%真核细胞中存在Cap 2,但它的作⽤在很⼤程度上尚未得到探索。

真核生物帽子结构的复杂程度与生物进化程度关系密切。而mRNA想要成为一种大规模的商业化产品,体外转录环节尤其关键。

mRNA疫苗或者药物需要形成Cap 1结构,才能在体内稳定表达。


3
图片

mRNA加帽的方法


在体外转录、制备mRNA有不同的方法,包括酶加帽、共转录加帽等。


1
酶加帽



这种方法最为传统,通过dsDNA作为底物,经过转录形成RNA,再经后续修饰成为mature的RNA。


图片


这方面有一个发现值得关注。利用牛痘病毒加帽酶(VCE, Vaccinia caping enzyme)和二氧甲基转移酶(2'O-methyltransferase),可以实现天然未修饰的帽结构。

这种方法几乎可以达到100%的加帽率,问题在于,牛痘病毒加帽酶比较昂贵,需要的酶促成本高(T7聚合酶、无机焦磷酸酶、DNA酶I),批量生产成本高。另外,引入了额外的蛋白和S-腺苷甲硫氨酸(SAM),工艺流程繁琐,需多次纯化,增加了QA/QC检测项。


2
共转录加帽



利用帽类似物直接进行体外转录生成带帽结构的mRNA,工艺流程简便,迅速提升mRNA疫苗和药物的产能。

基于化学合成工艺的发展,帽类似物的结构已经从最开始第一代的mCap逐步发展到第二代的ARCA和第三代Cap 1类似物(CleanCap)

第一代帽类似物mCap,标准帽结构类似物由于存在两个游离的3'-OH部分,m7Gppp G能够以两种方向整合m7G(5' )pppG-RNA或G(5‘)pppm7G-RNA,产生转录本为5' -加帽和5' -三磷酸的混合转录产物。


图片


帽类似物以错误的方向掺入形成的反向帽结构与eIF4E结合很差,mRNA则无法有效翻译,从而导致目标蛋白产量低。

ARCA(抗反向帽类似物)是第二代帽类似物。因为ARCA在第三位进行了甲氧基的修饰,只有一个3'-OH基团,进行共转录时为定向整合,因此转录过程中只能以正确的方向插入,所形成的mRNA被翻译时的效率相当于mCap形成的mRNA的两倍。


图片


在转录反应中,使用ARCA与GTP的4:1混合物将得到约70%的加帽mRNA。ARCA共转录生成Cap 0结构的mRNA,1μg起始模板量大约转录产生~30μg mRNA产物,转录产量低,并且需要二氧甲基转移酶进一步作用生成Cap1结构的mRNA。

第三代Cap1类似物(CleanCap)共转录直接生成Cap1结构的mRNA,1μg起始模板量大约转录产生80-100μg mRNA产量高,加帽效率提高到90%以上。


图片


第三代方法解决了ARCA产量低和加帽效率低的问题。BioNTech上市的新冠疫苗BNT162b2采用共转录加帽工艺。

不过,由于这种技术涉及高昂的专利费,业界也亟需能够避开专利实现共转录加帽的新方法。需要考量的因素包括:高效转录过程具有较高的mRNA加帽率;能被eIF4E复合体识别,转录率高;mRNA稳定性好;易于扩大规模和成本效益等。


图片


迄今为止,也有很多的研究聚焦在帽结构的化学修饰上,通过在帽结构的不同位置进行不同的修饰改造,可以增加mRNA的表达量。



版权申明:

本文转载于同写意,系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的的媒体或个人可与我们联系,我们将立即进行删除处理。


会员登录
登录
其他帐号登录:
我的资料
留言
回到顶部